How to Bypass NuData in 2025

NuData Security's behavioral biometrics can block even the most sophisticated automation attempts on major platforms like Ticketmaster, Kohl's, and other enterprise websites. This technical guide breaks down exactly how NuData tracks users and provides battle-tested methods to bypass their detection.

NuData's Detection Architecture {#nudata-detection-architecture}

NuData, now a Mastercard company, monitors over 650 billion behavioral events annually and uses machine learning models to detect bot-like patterns across multiple use cases including login monitoring, transaction verification, and account hijacking. The system tracks three main data layers:

Behavioral Biometrics: Mouse movements, typing patterns, scrolling behavior, and device angle information Device Fingerprinting: Canvas fingerprints, WebGL parameters, screen resolution, installed fonts Network Intelligence: IP reputation, geolocation consistency, Trust Consortium data

The most critical component for bypassing NuData is the nds-pmd parameter - a session token that validates your interaction as legitimate. Without this token properly generated and submitted, your requests will be flagged immediately.

Step 1: Extract the NuData Script ID {#step-1-extract-nudata-script-id}

First, you need to locate NuData's JavaScript on the target website. The script is typically hosted at *.nudatasecurity.com and contains the configuration needed to generate valid tokens.

Request-Based Extraction

For lightweight operations, extract the script ID directly from the page HTML:

import re
import requests
from bs4 import BeautifulSoup

def extract_nudata_script(url):
    """
    Extracts NuData script ID from target webpage
    Returns tuple of (script_id, session_params)
    """
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8',
        'Accept-Language': 'en-US,en;q=0.5',
        'Accept-Encoding': 'gzip, deflate, br',
        'DNT': '1',
        'Connection': 'keep-alive',
        'Upgrade-Insecure-Requests': '1'
    }
    
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    
    # Pattern 1: Direct script tag
    script_pattern = re.compile(
        r'<script[^>]*\s+src=["\'].*?nudatasecurity\.com/([^"\']+)["\'][^>]*>',
        re.IGNORECASE
    )
    
    # Pattern 2: Dynamic script loading
    dynamic_pattern = re.compile(
        r'loadScript\(["\'].*?nudatasecurity\.com/([^"\']+)["\']',
        re.IGNORECASE
    )
    
    script_match = script_pattern.search(response.text)
    if not script_match:
        script_match = dynamic_pattern.search(response.text)
    
    if script_match:
        script_id = script_match.group(1)
        
        # Extract session parameters if available
        session_params = {}
        session_pattern = re.compile(r'nds[_-]?session[_-]?id["\']?\s*[:=]\s*["\']([^"\']+)')
        session_match = session_pattern.search(response.text)
        if session_match:
            session_params['session_id'] = session_match.group(1)
            
        return script_id, session_params
    
    return None, {}

# Usage
script_id, params = extract_nudata_script('https://www.ticketmaster.com')
print(f"Script ID: {script_id}")
print(f"Session params: {params}")

Browser-Based Extraction with Playwright

For sites with heavy JavaScript obfuscation, use a real browser:

from playwright.sync_api import sync_playwright
import json

def extract_nudata_browser(url):
    """
    Uses Playwright to extract NuData configuration from runtime
    """
    with sync_playwright() as p:
        # Launch with stealth settings
        browser = p.chromium.launch(
            headless=False,  # Run headed for better evasion
            args=[
                '--disable-blink-features=AutomationControlled',
                '--disable-dev-shm-usage',
                '--no-sandbox',
                '--disable-web-security',
                '--disable-features=IsolateOrigins,site-per-process'
            ]
        )
        
        context = browser.new_context(
            viewport={'width': 1920, 'height': 1080},
            user_agent='Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36',
            locale='en-US',
            timezone_id='America/New_York'
        )
        
        # Inject evasion scripts before page loads
        context.add_init_script("""
            Object.defineProperty(navigator, 'webdriver', {
                get: () => undefined
            });
            
            // Override chrome detection
            window.chrome = {
                runtime: {},
                loadTimes: function() {},
                csi: function() {}
            };
            
            // Spoof plugins
            Object.defineProperty(navigator, 'plugins', {
                get: () => [1, 2, 3, 4, 5]
            });
        """)
        
        page = context.new_page()
        
        # Intercept NuData script requests
        nudata_config = {}
        
        def handle_response(response):
            if 'nudatasecurity.com' in response.url:
                nudata_config['script_url'] = response.url
                # Extract script ID from URL
                import re
                match = re.search(r'nudatasecurity\.com/([^?]+)', response.url)
                if match:
                    nudata_config['script_id'] = match.group(1)
        
        page.on('response', handle_response)
        
        # Navigate and wait for NuData to load
        page.goto(url, wait_until='networkidle')
        page.wait_for_timeout(3000)  # Give NuData time to initialize
        
        # Extract runtime configuration
        try:
            runtime_config = page.evaluate("""
                () => {
                    // Look for NuData objects in window
                    const config = {};
                    if (window.ndsObj) config.ndsObj = window.ndsObj;
                    if (window.nds) config.nds = window.nds;
                    if (window.__NDS_CONFIG__) config.__NDS_CONFIG__ = window.__NDS_CONFIG__;
                    return config;
                }
            """)
            nudata_config['runtime'] = runtime_config
        except:
            pass
        
        browser.close()
        return nudata_config

# Usage
config = extract_nudata_browser('https://www.ticketmaster.com')
print(json.dumps(config, indent=2))

Step 2: Generate Valid NDS-PMD Tokens {#step-2-generate-nds-pmd-tokens}

The nds-pmd parameter contains encoded behavioral data that NuData analyzes. Here are three methods to generate valid tokens:

Method A: API-Based Token Generation

The fastest approach uses a dedicated API service:

import requests
import time
from typing import Dict, Optional

class NuDataTokenGenerator:
    def __init__(self, api_key: str, api_url: str = "https://nudata.yourapi.tech"):
        self.api_key = api_key
        self.api_url = api_url
        self.session = requests.Session()
        self.session.headers.update({
            'x-api-key': api_key,
            'Content-Type': 'application/json'
        })
    
    def generate_token(
        self, 
        script_id: str, 
        session_id: Optional[str] = None,
        user_agent: Optional[str] = None,
        additional_headers: Optional[Dict] = None
    ) -> Dict:
        """
        Generates NuData token with proper behavioral simulation
        """
        headers = {
            'User-Agent': user_agent or 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
            'Accept-Language': 'en-US,en;q=0.9',
            'Sec-Ch-Ua': '"Chromium";v="122", "Not(A:Brand";v="24", "Google Chrome";v="122"',
            'Sec-Ch-Ua-Mobile': '?0',
            'Sec-Ch-Ua-Platform': '"Windows"'
        }
        
        if additional_headers:
            headers.update(additional_headers)
        
        payload = {
            'scriptID': script_id,
            'session_id': session_id,
            'behavioral_data': {
                'mouse_movements': self._generate_mouse_pattern(),
                'typing_pattern': self._generate_typing_pattern(),
                'scroll_behavior': self._generate_scroll_pattern()
            }
        }
        
        response = self.session.post(
            f"{self.api_url}/generate",
            json=payload,
            headers=headers
        )
        
        if response.status_code == 200:
            return response.json()
        else:
            raise Exception(f"Token generation failed: {response.text}")
    
    def _generate_mouse_pattern(self) -> list:
        """Generates realistic mouse movement data"""
        import random
        movements = []
        x, y = 500, 300
        
        for _ in range(random.randint(20, 40)):
            # Human-like curved movements
            x += random.gauss(0, 15)
            y += random.gauss(0, 15)
            movements.append({
                'x': max(0, min(1920, int(x))),
                'y': max(0, min(1080, int(y))),
                'timestamp': int(time.time() * 1000) + random.randint(50, 200)
            })
        
        return movements
    
    def _generate_typing_pattern(self) -> dict:
        """Generates realistic typing cadence data"""
        import random
        return {
            'avg_key_delay': random.gauss(120, 30),  # ms between keystrokes
            'typing_speed_variance': random.uniform(0.15, 0.35),
            'backspace_count': random.randint(0, 3),
            'pause_count': random.randint(1, 4)
        }
    
    def _generate_scroll_pattern(self) -> list:
        """Generates human-like scrolling data"""
        import random
        scrolls = []
        current_position = 0
        
        for _ in range(random.randint(3, 8)):
            delta = random.gauss(300, 100)
            current_position += delta
            scrolls.append({
                'position': max(0, int(current_position)),
                'velocity': abs(random.gauss(2.5, 0.8)),
                'timestamp': int(time.time() * 1000) + random.randint(500, 2000)
            })
        
        return scrolls

# Usage
generator = NuDataTokenGenerator(api_key="YOUR_API_KEY")
token_data = generator.generate_token(
    script_id="abc123.js",
    session_id="session_xyz",
    user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
)
print(f"Generated token: {token_data['nds-pmd']}")

Method B: Local Token Generation

Generate tokens locally by reverse-engineering NuData's algorithm:

import hashlib
import base64
import json
import time
import random
from typing import Dict

class LocalNuDataGenerator:
    def __init__(self):
        self.behavioral_buffer = []
        self.start_time = int(time.time() * 1000)
        
    def generate_local_token(self, config: Dict) -> str:
        """
        Generates NuData token locally using behavioral simulation
        """
        # Build behavioral profile
        profile = {
            'jvqtrgQngn': {  # Obfuscated field names
                'oq': self._get_screen_info(),
                'wfi': f"flap-{random.randint(100000, 999999)}",
                'oc': self._generate_session_hash(),
                'fe': f"{1920}k{1080} 24",
                'qvqgm': str(random.randint(250, 350)),
                'jxe': int(time.time() * 1000) - self.start_time,
                'syi': 'snyfr',  # ROT13 encoded 'false'
                'si': 'si,btt,zc4,jroz',
                'sn': 'sn,zcrt,btt,jni',
                'us': self._generate_device_hash(),
                'cy': base64.b64encode('MacIntel'.encode()).decode(),
                'sg': json.dumps({'zgc': 0, 'gf': False, 'gr': False}),
                'sp': json.dumps({'gp': True, 'ap': True}),
                'sf': 'gehr',  # ROT13 encoded 'true'
                'jt': self._generate_session_hash(),
                'sz': self._generate_device_hash(),
                'vce': self._encode_interactions()
            }
        }
        
        # Encode the profile
        encoded = base64.b64encode(
            json.dumps(profile).encode()
        ).decode()
        
        return encoded
    
    def _get_screen_info(self) -> str:
        """Generate screen dimension string"""
        screens = [
            "1920:1080:1920:1040:1920:1080",
            "1440:900:1440:860:1440:900",
            "2560:1440:2560:1400:2560:1440",
            "1366:768:1366:728:1366:768"
        ]
        return random.choice(screens)
    
    def _generate_session_hash(self) -> str:
        """Generate consistent session hash"""
        data = f"{time.time()}{random.random()}"
        return hashlib.md5(data.encode()).hexdigest()[:16]
    
    def _generate_device_hash(self) -> str:
        """Generate device fingerprint hash"""
        device_data = {
            'platform': 'Win32',
            'vendor': 'Google Inc.',
            'renderer': 'ANGLE (Intel, Intel(R) UHD Graphics Direct3D11)',
            'memory': 8
        }
        return hashlib.sha256(
            json.dumps(device_data).encode()
        ).hexdigest()[:16]
    
    def _encode_interactions(self) -> str:
        """Encode behavioral interaction data"""
        interactions = []
        
        # Mouse movements
        for i in range(random.randint(10, 30)):
            interactions.append(
                f"mm,{random.randint(100, 1900)},{random.randint(100, 1000)}"
            )
        
        # Key presses
        for i in range(random.randint(5, 15)):
            interactions.append(
                f"kp,{random.randint(65, 90)},{random.randint(80, 200)}"
            )
        
        # Scrolls
        for i in range(random.randint(2, 8)):
            interactions.append(
                f"sc,{random.randint(0, 3000)},{random.randint(1, 5)}"
            )
        
        return ';'.join(interactions)
    
    def add_interaction(self, action_type: str, data: Dict):
        """Add behavioral interaction to buffer"""
        self.behavioral_buffer.append({
            'type': action_type,
            'data': data,
            'timestamp': int(time.time() * 1000)
        })

# Usage
generator = LocalNuDataGenerator()
token = generator.generate_local_token({'site': 'ticketmaster'})
print(f"Local token: {token}")

Step 3: Choose Your Bypass Strategy {#step-3-bypass-strategy}

Strategy 1: Pure Requests Approach (Lightweight)

Best for high-volume operations where speed matters:

import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import random

class NuDataRequester:
    def __init__(self, proxies: list = None):
        self.session = requests.Session()
        self.proxies = proxies or []
        
        # Configure retry strategy
        retry_strategy = Retry(
            total=3,
            backoff_factor=1,
            status_forcelist=[429, 500, 502, 503, 504]
        )
        adapter = HTTPAdapter(max_retries=retry_strategy)
        self.session.mount("http://", adapter)
        self.session.mount("https://", adapter)
        
        # TLS fingerprint spoofing
        self.session.headers.update(self._get_browser_headers())
    
    def _get_browser_headers(self) -> dict:
        """Returns browser-like headers with proper ordering"""
        return {
            'sec-ch-ua': '"Not A(Brand";v="99", "Google Chrome";v="121", "Chromium";v="121"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': self._get_random_ua(),
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8',
            'Sec-Fetch-Site': 'none',
            'Sec-Fetch-Mode': 'navigate',
            'Sec-Fetch-User': '?1',
            'Sec-Fetch-Dest': 'document',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'en-US,en;q=0.9'
        }
    
    def _get_random_ua(self) -> str:
        """Returns random realistic user agent"""
        user_agents = [
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36',
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36',
            'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36'
        ]
        return random.choice(user_agents)
    
    def make_request(self, url: str, nds_token: str, method: str = 'GET', data: dict = None):
        """Makes request with NuData token"""
        proxy = random.choice(self.proxies) if self.proxies else None
        
        # Add NuData token to request
        if method == 'POST':
            if data is None:
                data = {}
            data['nds-pmd'] = nds_token
            
            response = self.session.post(
                url,
                data=data,
                proxies={'http': proxy, 'https': proxy} if proxy else None,
                timeout=30
            )
        else:
            params = {'nds-pmd': nds_token}
            response = self.session.get(
                url,
                params=params,
                proxies={'http': proxy, 'https': proxy} if proxy else None,
                timeout=30
            )
        
        return response

# Usage with proxy rotation
proxies = [
    'http://user:pass@proxy1.com:8080',
    'http://user:pass@proxy2.com:8080',
    'http://user:pass@proxy3.com:8080'
]

requester = NuDataRequester(proxies=proxies)
response = requester.make_request(
    'https://www.ticketmaster.com/api/search',
    nds_token='generated_token_here',
    method='POST',
    data={'query': 'concert'}
)

Strategy 2: Selenium with Undetected ChromeDriver

For sites requiring full browser execution:

import undetected_chromedriver as uc
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import random
import time

class StealthSeleniumDriver:
    def __init__(self, proxy: str = None):
        options = uc.ChromeOptions()
        
        # Stealth options
        options.add_argument('--disable-blink-features=AutomationControlled')
        options.add_argument('--disable-dev-shm-usage')
        options.add_argument('--no-sandbox')
        options.add_argument('--disable-gpu')
        options.add_argument(f'--user-agent={self._get_user_agent()}')
        
        # Window size for consistent fingerprint
        options.add_argument('--window-size=1920,1080')
        options.add_argument('--start-maximized')
        
        # Disable automation flags
        options.add_experimental_option("excludeSwitches", ["enable-automation"])
        options.add_experimental_option('useAutomationExtension', False)
        
        # Add proxy if provided
        if proxy:
            options.add_argument(f'--proxy-server={proxy}')
        
        # Initialize driver
        self.driver = uc.Chrome(options=options, version_main=121)
        
        # Execute stealth scripts
        self._apply_stealth_scripts()
    
    def _get_user_agent(self) -> str:
        agents = [
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36',
            'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36'
        ]
        return random.choice(agents)
    
    def _apply_stealth_scripts(self):
        """Apply additional stealth JavaScript"""
        stealth_js = """
        // Override webdriver detection
        Object.defineProperty(navigator, 'webdriver', {
            get: () => undefined
        });
        
        // Override plugins to look real
        Object.defineProperty(navigator, 'plugins', {
            get: () => [
                {name: 'Chrome PDF Plugin', filename: 'internal-pdf-viewer'},
                {name: 'Chrome PDF Viewer', filename: 'mhjfbmdgcfjbbpaeojofohoefgiehjai'},
                {name: 'Native Client', filename: 'internal-nacl-plugin'}
            ]
        });
        
        // Override permissions
        const originalQuery = window.navigator.permissions.query;
        window.navigator.permissions.query = (parameters) => (
            parameters.name === 'notifications' ?
                Promise.resolve({ state: Notification.permission }) :
                originalQuery(parameters)
        );
        
        // Spoof languages
        Object.defineProperty(navigator, 'languages', {
            get: () => ['en-US', 'en']
        });
        
        // Override hardwareConcurrency
        Object.defineProperty(navigator, 'hardwareConcurrency', {
            get: () => 8
        });
        
        // Override deviceMemory
        Object.defineProperty(navigator, 'deviceMemory', {
            get: () => 8
        });
        """
        self.driver.execute_cdp_cmd('Page.addScriptToEvaluateOnNewDocument', {
            'source': stealth_js
        })
    
    def human_like_interaction(self, element):
        """Perform human-like interaction with element"""
        # Random delay before action
        time.sleep(random.uniform(0.5, 2.0))
        
        # Move to element with curve
        self._curved_mouse_movement(element)
        
        # Random micro-movements
        for _ in range(random.randint(1, 3)):
            x_offset = random.randint(-5, 5)
            y_offset = random.randint(-5, 5)
            self.driver.execute_script(
                f"arguments[0].dispatchEvent(new MouseEvent('mousemove', {{bubbles: true, clientX: {x_offset}, clientY: {y_offset}}}))",
                element
            )
            time.sleep(random.uniform(0.05, 0.15))
        
        # Click with realistic timing
        element.click()
    
    def _curved_mouse_movement(self, element):
        """Simulate curved mouse movement to element"""
        # Get element position
        location = element.location
        size = element.size
        
        # Calculate target position (center of element)
        target_x = location['x'] + size['width'] / 2
        target_y = location['y'] + size['height'] / 2
        
        # Generate bezier curve points
        steps = random.randint(10, 20)
        for i in range(steps):
            t = i / steps
            # Bezier curve calculation
            x = (1-t)**2 * 0 + 2*(1-t)*t * random.randint(100, 1800) + t**2 * target_x
            y = (1-t)**2 * 0 + 2*(1-t)*t * random.randint(100, 900) + t**2 * target_y
            
            self.driver.execute_script(
                f"document.dispatchEvent(new MouseEvent('mousemove', {{bubbles: true, clientX: {x}, clientY: {y}}}))"
            )
            time.sleep(random.uniform(0.01, 0.03))
    
    def type_like_human(self, element, text):
        """Type text with human-like cadence"""
        element.click()
        
        for char in text:
            element.send_keys(char)
            
            # Variable typing speed
            if char == ' ':
                time.sleep(random.uniform(0.1, 0.3))
            elif char in '.,!?':
                time.sleep(random.uniform(0.2, 0.5))
            else:
                time.sleep(random.gauss(0.1, 0.03))
            
            # Occasional typos and corrections
            if random.random() < 0.02:
                wrong_char = random.choice('abcdefghijklmnopqrstuvwxyz')
                element.send_keys(wrong_char)
                time.sleep(random.uniform(0.2, 0.4))
                element.send_keys('\b')
                time.sleep(random.uniform(0.1, 0.2))

# Usage
driver = StealthSeleniumDriver(proxy='http://proxy.com:8080')
driver.driver.get('https://www.ticketmaster.com')

# Wait for page load
wait = WebDriverWait(driver.driver, 10)
search_box = wait.until(EC.presence_of_element_located((By.ID, 'search-input')))

# Type with human-like behavior
driver.type_like_human(search_box, 'Taylor Swift concert')

Strategy 3: Playwright with Fingerprint Spoofing

The most advanced approach using Playwright:

from playwright.sync_api import sync_playwright
import random
import json

class PlaywrightNuDataBypass:
    def __init__(self):
        self.playwright = sync_playwright().start()
        self.fingerprints = self._load_fingerprints()
    
    def _load_fingerprints(self):
        """Load real browser fingerprints"""
        return [
            {
                'userAgent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
                'viewport': {'width': 1920, 'height': 1080},
                'screen': {'width': 1920, 'height': 1080},
                'platform': 'Win32',
                'memory': 8,
                'cpus': 8,
                'canvas_hash': self._generate_canvas_hash()
            }
            # Add more fingerprints
        ]
    
    def _generate_canvas_hash(self):
        """Generate unique canvas fingerprint"""
        import hashlib
        data = f"{random.random()}{random.randint(1000000, 9999999)}"
        return hashlib.md5(data.encode()).hexdigest()
    
    def create_context(self, proxy=None):
        """Create stealth browser context"""
        fingerprint = random.choice(self.fingerprints)
        
        browser = self.playwright.chromium.launch(
            headless=False,  # Use headed mode for better evasion
            args=[
                '--disable-blink-features=AutomationControlled',
                f'--user-agent={fingerprint["userAgent"]}',
                '--disable-web-security',
                '--disable-features=IsolateOrigins,site-per-process',
                '--allow-running-insecure-content',
                '--disable-features=CrossSiteDocumentBlockingIfIsolating',
                '--disable-site-isolation-trials'
            ],
            proxy={'server': proxy} if proxy else None
        )
        
        context = browser.new_context(
            viewport=fingerprint['viewport'],
            user_agent=fingerprint['userAgent'],
            locale='en-US',
            timezone_id='America/New_York',
            permissions=['geolocation', 'notifications'],
            geolocation={'latitude': 40.7128, 'longitude': -74.0060},
            color_scheme='light',
            device_scale_factor=1,
            has_touch=False,
            is_mobile=False
        )
        
        # Inject fingerprint spoofing
        context.add_init_script(self._get_spoofing_script(fingerprint))
        
        return context
    
    def _get_spoofing_script(self, fingerprint):
        """Generate JavaScript for fingerprint spoofing"""
        return f"""
        // Canvas fingerprint spoofing
        const originalToDataURL = HTMLCanvasElement.prototype.toDataURL;
        HTMLCanvasElement.prototype.toDataURL = function(type) {{
            if (type === 'image/png') {{
                // Add noise to canvas
                const context = this.getContext('2d');
                const imageData = context.getImageData(0, 0, this.width, this.height);
                for (let i = 0; i < imageData.data.length; i += 4) {{
                    imageData.data[i] += Math.random() * 0.1;
                }}
                context.putImageData(imageData, 0, 0);
            }}
            return originalToDataURL.apply(this, arguments);
        }};
        
        // WebGL spoofing
        const getParameter = WebGLRenderingContext.prototype.getParameter;
        WebGLRenderingContext.prototype.getParameter = function(parameter) {{
            if (parameter === 37445) {{
                return 'Intel Inc.';
            }}
            if (parameter === 37446) {{
                return 'Intel Iris OpenGL Engine';
            }}
            return getParameter.apply(this, arguments);
        }};
        
        // Audio context spoofing
        const AudioContext = window.AudioContext || window.webkitAudioContext;
        const audioContext = new AudioContext();
        const oscillator = audioContext.createOscillator();
        const gain = audioContext.createGain();
        oscillator.connect(gain);
        gain.connect(audioContext.destination);
        oscillator.frequency.value = 1000 + Math.random() * 100;
        
        // Battery API spoofing
        if ('getBattery' in navigator) {{
            navigator.getBattery = async () => ({{
                charging: Math.random() > 0.5,
                chargingTime: Math.random() * 3600,
                dischargingTime: Infinity,
                level: Math.random()
            }});
        }}
        
        // Hardware concurrency
        Object.defineProperty(navigator, 'hardwareConcurrency', {{
            get: () => {fingerprint['cpus']}
        }});
        
        // Device memory
        Object.defineProperty(navigator, 'deviceMemory', {{
            get: () => {fingerprint['memory']}
        }});
        
        // Platform
        Object.defineProperty(navigator, 'platform', {{
            get: () => '{fingerprint['platform']}'
        }});
        """
    
    async def navigate_with_behavior(self, page, url):
        """Navigate to URL with human-like behavior"""
        # Random initial wait
        await page.wait_for_timeout(random.randint(1000, 3000))
        
        # Navigate
        await page.goto(url, wait_until='networkidle')
        
        # Simulate reading behavior
        for _ in range(random.randint(2, 5)):
            await page.mouse.wheel(0, random.randint(100, 300))
            await page.wait_for_timeout(random.randint(500, 2000))
        
        # Random mouse movements
        for _ in range(random.randint(5, 10)):
            x = random.randint(100, 1800)
            y = random.randint(100, 900)
            await page.mouse.move(x, y)
            await page.wait_for_timeout(random.randint(100, 500))
        
        return page

# Usage
bypass = PlaywrightNuDataBypass()
context = bypass.create_context(proxy='http://proxy.com:8080')
page = context.new_page()

# Navigate with behavioral simulation
bypass.navigate_with_behavior(page, 'https://www.ticketmaster.com')

Step 4: Implement Human-Like Behavior {#step-4-human-behavior}

NuData detects bots by analyzing parameters such as typing patterns, device information, and device angle information. Here's how to simulate realistic human behavior:

Advanced Behavioral Simulation

import numpy as np
from scipy import interpolate
import time
import random

class BehavioralSimulator:
    def __init__(self):
        self.typing_profile = self._generate_typing_profile()
        self.mouse_profile = self._generate_mouse_profile()
    
    def _generate_typing_profile(self):
        """Generate unique typing profile based on real human data"""
        return {
            'avg_dwell_time': np.random.normal(120, 30),  # How long keys are pressed
            'avg_flight_time': np.random.normal(150, 40),  # Time between keys
            'backspace_probability': 0.02,
            'pause_probability': 0.1,
            'burst_typing_probability': 0.15,
            'common_bigrams': {  # Faster typing for common patterns
                'th': 0.8, 'he': 0.8, 'in': 0.85, 'er': 0.82,
                'an': 0.83, 'ed': 0.81, 'nd': 0.84, 'to': 0.86
            }
        }
    
    def _generate_mouse_profile(self):
        """Generate mouse movement profile"""
        return {
            'avg_speed': np.random.normal(400, 100),  # pixels per second
            'acceleration': np.random.normal(1.5, 0.3),
            'jitter_amplitude': np.random.uniform(1, 3),
            'curve_tendency': np.random.uniform(0.1, 0.3)
        }
    
    def generate_mouse_path(self, start_x, start_y, end_x, end_y):
        """Generate realistic mouse movement path using Bezier curves"""
        distance = np.sqrt((end_x - start_x)**2 + (end_y - start_y)**2)
        num_points = max(10, int(distance / 50))
        
        # Generate control points for Bezier curve
        ctrl_x1 = start_x + (end_x - start_x) * 0.25 + random.uniform(-50, 50)
        ctrl_y1 = start_y + (end_y - start_y) * 0.25 + random.uniform(-50, 50)
        ctrl_x2 = start_x + (end_x - start_x) * 0.75 + random.uniform(-50, 50)
        ctrl_y2 = start_y + (end_y - start_y) * 0.75 + random.uniform(-50, 50)
        
        # Generate Bezier curve
        t = np.linspace(0, 1, num_points)
        x = (1-t)**3 * start_x + 3*(1-t)**2*t * ctrl_x1 + 3*(1-t)*t**2 * ctrl_x2 + t**3 * end_x
        y = (1-t)**3 * start_y + 3*(1-t)**2*t * ctrl_y1 + 3*(1-t)*t**2 * ctrl_y2 + t**3 * end_y
        
        # Add micro jitter
        x += np.random.normal(0, self.mouse_profile['jitter_amplitude'], num_points)
        y += np.random.normal(0, self.mouse_profile['jitter_amplitude'], num_points)
        
        # Generate timestamps with variable speed
        timestamps = []
        current_time = 0
        for i in range(1, num_points):
            segment_distance = np.sqrt((x[i] - x[i-1])**2 + (y[i] - y[i-1])**2)
            segment_time = segment_distance / self.mouse_profile['avg_speed']
            
            # Add acceleration/deceleration
            if i < num_points * 0.2:  # Acceleration phase
                segment_time *= (1 + self.mouse_profile['acceleration'])
            elif i > num_points * 0.8:  # Deceleration phase
                segment_time *= (1 + self.mouse_profile['acceleration'] * 1.5)
            
            current_time += segment_time * 1000  # Convert to milliseconds
            timestamps.append(int(current_time))
        
        return list(zip(x.astype(int), y.astype(int), timestamps))
    
    def generate_typing_events(self, text):
        """Generate realistic typing events with timing"""
        events = []
        current_time = 0
        
        for i, char in enumerate(text):
            # Check for typo
            if random.random() < self.typing_profile['backspace_probability']:
                # Make typo
                wrong_char = random.choice('abcdefghijklmnopqrstuvwxyz')
                events.append({
                    'type': 'keydown',
                    'key': wrong_char,
                    'timestamp': current_time
                })
                current_time += np.random.normal(
                    self.typing_profile['avg_dwell_time'], 20
                )
                
                # Realize mistake and backspace
                current_time += np.random.normal(300, 50)  # Reaction time
                events.append({
                    'type': 'keydown',
                    'key': 'Backspace',
                    'timestamp': current_time
                })
                current_time += np.random.normal(100, 20)
            
            # Check for pause
            if random.random() < self.typing_profile['pause_probability']:
                current_time += np.random.normal(800, 200)
            
            # Check for bigram optimization
            if i > 0:
                bigram = text[i-1:i+1].lower()
                if bigram in self.typing_profile['common_bigrams']:
                    speed_multiplier = self.typing_profile['common_bigrams'][bigram]
                else:
                    speed_multiplier = 1.0
            else:
                speed_multiplier = 1.0
            
            # Add key event
            events.append({
                'type': 'keydown',
                'key': char,
                'timestamp': current_time
            })
            
            # Dwell time (how long key is pressed)
            dwell = np.random.normal(
                self.typing_profile['avg_dwell_time'] * speed_multiplier, 
                20
            )
            current_time += max(50, dwell)
            
            events.append({
                'type': 'keyup',
                'key': char,
                'timestamp': current_time
            })
            
            # Flight time (time to next key)
            if i < len(text) - 1:
                flight = np.random.normal(
                    self.typing_profile['avg_flight_time'] * speed_multiplier,
                    30
                )
                current_time += max(30, flight)
        
        return events
    
    def generate_scroll_events(self, page_height):
        """Generate realistic scrolling pattern"""
        events = []
        current_position = 0
        current_time = 0
        
        # Reading pattern: fast scan, slow read, fast scan
        while current_position < page_height * 0.8:
            # Determine scroll type
            scroll_type = random.choice(['fast_scan', 'slow_read', 'back_check'])
            
            if scroll_type == 'fast_scan':
                # Quick scroll down
                delta = random.uniform(300, 600)
                duration = random.uniform(200, 400)
            elif scroll_type == 'slow_read':
                # Slow reading scroll
                delta = random.uniform(50, 150)
                duration = random.uniform(1000, 3000)
            else:  # back_check
                # Scroll back up to reread
                delta = random.uniform(-200, -50)
                duration = random.uniform(500, 1000)
            
            new_position = max(0, min(page_height, current_position + delta))
            
            events.append({
                'type': 'scroll',
                'position': new_position,
                'delta': delta,
                'timestamp': current_time,
                'duration': duration
            })
            
            current_position = new_position
            current_time += duration + random.uniform(100, 500)  # Pause between scrolls
        
        return events

# Usage example
simulator = BehavioralSimulator()

# Generate mouse path
mouse_path = simulator.generate_mouse_path(100, 100, 800, 600)
for x, y, timestamp in mouse_path:
    print(f"Move to ({x}, {y}) at {timestamp}ms")

# Generate typing events
typing_events = simulator.generate_typing_events("Hello World")
for event in typing_events:
    print(f"{event['type']} key '{event['key']}' at {event['timestamp']}ms")

# Generate scroll events
scroll_events = simulator.generate_scroll_events(3000)
for event in scroll_events:
    print(f"Scroll to {event['position']} at {event['timestamp']}ms")

Step 5: Handle Session Management {#step-5-session-management}

NuData tracks sessions across requests. Proper session management is crucial:

import pickle
import json
from datetime import datetime, timedelta

class NuDataSessionManager:
    def __init__(self, session_file='nudata_sessions.pkl'):
        self.session_file = session_file
        self.sessions = self._load_sessions()
        self.current_session = None
    
    def _load_sessions(self):
        """Load existing sessions from file"""
        try:
            with open(self.session_file, 'rb') as f:
                return pickle.load(f)
        except FileNotFoundError:
            return {}
    
    def _save_sessions(self):
        """Save sessions to file"""
        with open(self.session_file, 'wb') as f:
            pickle.dump(self.sessions, f)
    
    def create_session(self, site_url):
        """Create new NuData session"""
        session_id = self._generate_session_id()
        
        self.current_session = {
            'id': session_id,
            'site': site_url,
            'created': datetime.now(),
            'last_used': datetime.now(),
            'cookies': {},
            'tokens': [],
            'behavioral_profile': self._init_behavioral_profile(),
            'request_count': 0
        }
        
        self.sessions[session_id] = self.current_session
        self._save_sessions()
        
        return session_id
    
    def _generate_session_id(self):
        """Generate unique session ID"""
        import uuid
        return str(uuid.uuid4())
    
    def _init_behavioral_profile(self):
        """Initialize behavioral profile for consistency"""
        return {
            'typing_speed': random.gauss(120, 20),
            'mouse_speed': random.gauss(400, 80),
            'scroll_pattern': random.choice(['smooth', 'jumpy', 'mixed']),
            'interaction_delays': {
                'min': random.uniform(0.5, 1.0),
                'max': random.uniform(2.0, 4.0),
                'avg': random.uniform(1.2, 2.0)
            }
        }
    
    def update_session(self, session_id, token=None, cookies=None):
        """Update session with new token or cookies"""
        if session_id in self.sessions:
            session = self.sessions[session_id]
            session['last_used'] = datetime.now()
            session['request_count'] += 1
            
            if token:
                session['tokens'].append({
                    'token': token,
                    'timestamp': datetime.now()
                })
                # Keep only last 10 tokens
                session['tokens'] = session['tokens'][-10:]
            
            if cookies:
                session['cookies'].update(cookies)
            
            self._save_sessions()
    
    def get_valid_session(self, site_url):
        """Get valid session for site or create new one"""
        # Look for recent valid session
        for session_id, session in self.sessions.items():
            if (session['site'] == site_url and 
                session['last_used'] > datetime.now() - timedelta(hours=1)):
                self.current_session = session
                return session_id
        
        # No valid session found, create new one
        return self.create_session(site_url)
    
    def get_session_context(self, session_id):
        """Get full session context for requests"""
        if session_id not in self.sessions:
            return None
        
        session = self.sessions[session_id]
        
        # Build context with consistent behavior
        context = {
            'session_id': session_id,
            'cookies': session['cookies'],
            'behavioral_profile': session['behavioral_profile'],
            'request_count': session['request_count'],
            'session_age': (datetime.now() - session['created']).total_seconds()
        }
        
        # Get most recent token if available
        if session['tokens']:
            context['latest_token'] = session['tokens'][-1]['token']
        
        return context
    
    def cleanup_old_sessions(self, max_age_hours=24):
        """Remove old sessions"""
        cutoff = datetime.now() - timedelta(hours=max_age_hours)
        
        old_sessions = [
            sid for sid, session in self.sessions.items()
            if session['last_used'] < cutoff
        ]
        
        for sid in old_sessions:
            del self.sessions[sid]
        
        self._save_sessions()
        print(f"Cleaned up {len(old_sessions)} old sessions")

# Usage
session_manager = NuDataSessionManager()

# Create or get session
session_id = session_manager.get_valid_session('https://www.ticketmaster.com')
print(f"Using session: {session_id}")

# Get session context for request
context = session_manager.get_session_context(session_id)
print(f"Session context: {json.dumps(context, default=str, indent=2)}")

# Update session after successful request
session_manager.update_session(
    session_id,
    token='new_nds_token_here',
    cookies={'session': 'abc123', 'user': 'xyz789'}
)

Common Pitfalls to Avoid {#common-pitfalls}

1. Inconsistent Fingerprints

Never mix fingerprint components from different browsers or devices. If you claim to be Chrome on Windows, all your properties must match:

# BAD: Inconsistent fingerprint
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0...) Chrome/121.0',  # Windows Chrome
    'Sec-CH-UA-Platform': '"macOS"'  # But claims macOS!
}

# GOOD: Consistent fingerprint
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0...) Chrome/121.0',
    'Sec-CH-UA-Platform': '"Windows"'
}

2. Unrealistic Timing Patterns

Avoid perfectly consistent timing - humans are naturally variable:

# BAD: Robot-like timing
for i in range(10):
    click_element()
    time.sleep(1.0)  # Exactly 1 second every time

# GOOD: Human-like variation
for i in range(10):
    click_element()
    time.sleep(random.gauss(1.0, 0.2))  # Variable timing around 1 second

3. Missing Behavioral Noise

Real humans make mistakes and have quirks:

# Add realistic behaviors
def human_typing(text):
    result = ""
    for char in text:
        if random.random() < 0.02:  # 2% typo rate
            result += random.choice('aeiou')  # Wrong character
            time.sleep(0.3)
            result = result[:-1]  # Backspace
        result += char
        time.sleep(random.gauss(0.1, 0.03))
    return result

4. Ignoring Rate Limits

Even with perfect bypassing, respect rate limits to avoid detection:

from time import sleep
from random import uniform

class RateLimiter:
    def __init__(self, requests_per_minute=30):
        self.min_delay = 60.0 / requests_per_minute
        self.last_request = 0
    
    def wait(self):
        elapsed = time.time() - self.last_request
        if elapsed < self.min_delay:
            sleep_time = self.min_delay - elapsed + uniform(0, 2)
            sleep(sleep_time)
        self.last_request = time.time()

Final Thoughts

Successfully bypassing NuData in 2025 requires a multi-layered approach combining proper token generation, realistic behavioral simulation, and consistent session management. As NuData continues to evolve with its Trust Consortium and machine learning models, staying ahead means constantly adapting your techniques.

Remember that while these techniques are powerful, they should be used responsibly and in compliance with website terms of service. The goal is to automate legitimate interactions, not to violate security measures for malicious purposes.

The key to success is thinking like NuData: every interaction must appear natural, every fingerprint must be consistent, and every session must follow realistic human patterns. With the code and techniques provided in this guide, you now have the tools to interact with NuData-protected sites effectively.

Marius Bernard

Marius Bernard

Marius Bernard is a Product Advisor, Technical SEO, & Brand Ambassador at Roundproxies. He was the lead author for the SEO chapter of the 2024 Web and a reviewer for the 2023 SEO chapter.