Brave's Proof of Work (PoW) captcha system blocks your automated scripts by requiring computational puzzles that slow down bots while letting humans pass through. In this guide, we'll explore five proven methods to bypass Brave's captcha solver, from simple request-based solutions to advanced browser automation techniques.
If you're scraping Brave Search or automating tasks in Brave browser, you've likely hit their captcha wall. Unlike Google's image-based reCAPTCHA, Brave uses Proof of Work captchas that require your computer to solve mathematical problems with little user interaction.
We've tested multiple approaches to bypass these challenges, including the brave_captcha_gen.py
script from GitHub. After extensive testing, we've identified the methods that actually work - and those that waste your time.
What you'll learn:
- Request-based bypasses that avoid captchas entirely
- Browser automation techniques for solving PoW challenges
- Token generation methods using Python
- Proxy rotation strategies to prevent detection
- Alternative scraping approaches
Why Brave Uses PoW Captchas (And Why They're Annoying)
Brave implemented PoW captchas to block bots that scrape search results while minimizing disruption for legitimate users. The system works by:
- Detecting suspicious behavior patterns
- Requiring computational work to prove you're human
- Adjusting difficulty based on detected threat level
Users report experiencing excessive captchas, especially when using VPNs or making frequent searches. This creates problems for legitimate automation needs like:
- SEO monitoring tools
- Research data collection
- Competitive analysis
- Academic studies
Method 1: Request-Based Bypass with Proper Headers
The simplest approach avoids triggering captchas by mimicking legitimate browser requests. Here's a Python implementation:
import requests
import random
from time import sleep
class BraveSearcher:
def __init__(self):
self.session = requests.Session()
self.user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
]
def search(self, query):
headers = {
'User-Agent': random.choice(self.user_agents),
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Cache-Control': 'max-age=0'
}
# Add delay to mimic human behavior
sleep(random.uniform(2, 5))
url = f'https://search.brave.com/search?q={query}'
response = self.session.get(url, headers=headers)
return response.text
# Usage
searcher = BraveSearcher()
results = searcher.search("python web scraping")
Pro tip: The key is maintaining session persistence and randomizing request patterns. Brave tracks behavior across requests, so consistency matters.
Method 2: Browser Automation with Undetected ChromeDriver
When request-based methods fail, browser automation provides a more robust solution:
from undetected_chromedriver import Chrome
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
class BraveCaptchaSolver:
def __init__(self):
options = Chrome.options()
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_experimental_option("excludeSwitches", ["enable-automation"])
options.add_experimental_option('useAutomationExtension', False)
self.driver = Chrome(options=options)
self.driver.execute_script("Object.defineProperty(navigator, 'webdriver', {get: () => undefined})")
def solve_pow_captcha(self, url):
self.driver.get(url)
# Wait for PoW captcha
try:
captcha_button = WebDriverWait(self.driver, 10).until(
EC.presence_of_element_located((By.XPATH, "//button[contains(text(), 'not a robot')]"))
)
# Click button to start PoW computation
captcha_button.click()
# Wait for computation to complete
time.sleep(3) # PoW takes time
# Check if captcha passed
return self.check_captcha_solved()
except:
return True # No captcha present
def check_captcha_solved(self):
# Verify we're on search results page
return "search.brave.com/search" in self.driver.current_url
solver = BraveCaptchaSolver()
if solver.solve_pow_captcha("https://search.brave.com/search?q=test"):
print("Captcha bypassed successfully")
This method works because undetected-chromedriver masks automation fingerprints that Brave checks for.
Method 3: Token Generation Using Mathematical Solutions
For developers who examined the brave_captcha_gen.py
script, here's how to implement a token generator:
import hashlib
import time
import json
from concurrent.futures import ThreadPoolExecutor
class BravePoWGenerator:
def __init__(self, difficulty=5):
self.difficulty = difficulty
def generate_pow_token(self, challenge):
"""Generate proof of work token for Brave captcha"""
nonce = 0
target = '0' * self.difficulty
while True:
data = f"{challenge}{nonce}"
hash_result = hashlib.sha256(data.encode()).hexdigest()
if hash_result.startswith(target):
return {
'challenge': challenge,
'nonce': nonce,
'hash': hash_result,
'timestamp': int(time.time())
}
nonce += 1
def parallel_solve(self, challenge, threads=4):
"""Use multiple threads to solve faster"""
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = []
for i in range(threads):
future = executor.submit(self._worker, challenge, i, threads)
futures.append(future)
for future in futures:
result = future.result()
if result:
return result
def _worker(self, challenge, start, step):
nonce = start
target = '0' * self.difficulty
while nonce < 10000000: # Limit iterations
data = f"{challenge}{nonce}"
hash_result = hashlib.sha256(data.encode()).hexdigest()
if hash_result.startswith(target):
return {
'challenge': challenge,
'nonce': nonce,
'hash': hash_result
}
nonce += step
return None
# Usage
generator = BravePoWGenerator()
token = generator.parallel_solve("example_challenge")
print(f"Generated token: {json.dumps(token, indent=2)}")
This approach mimics how Brave's JavaScript calculates proof of work tokens client-side.
Method 4: Proxy Rotation and User Agent Spoofing
VPN users frequently trigger captchas due to shared IP addresses. Here's a smart proxy rotation strategy:
import requests
from itertools import cycle
import random
class SmartProxyRotator:
def __init__(self, proxy_list):
self.proxies = cycle(proxy_list)
self.failed_proxies = set()
self.success_count = {}
def get_next_proxy(self):
"""Get next working proxy with smart selection"""
max_attempts = len(self.proxies)
for _ in range(max_attempts):
proxy = next(self.proxies)
if proxy in self.failed_proxies:
continue
# Prefer proxies with successful history
if self.success_count.get(proxy, 0) > 5:
return proxy
return proxy
# Reset failed proxies if all marked as failed
self.failed_proxies.clear()
return next(self.proxies)
def make_request(self, url, headers):
proxy = self.get_next_proxy()
proxy_dict = {
'http': proxy,
'https': proxy
}
try:
response = requests.get(
url,
headers=headers,
proxies=proxy_dict,
timeout=10
)
if response.status_code == 200:
self.success_count[proxy] = self.success_count.get(proxy, 0) + 1
return response
else:
self.failed_proxies.add(proxy)
except:
self.failed_proxies.add(proxy)
return None
# Example usage
proxies = [
'http://proxy1.com:8080',
'http://proxy2.com:8080',
'http://proxy3.com:8080'
]
rotator = SmartProxyRotator(proxies)
response = rotator.make_request(
'https://search.brave.com/search?q=test',
{'User-Agent': 'Mozilla/5.0...'}
)
Important: Use residential proxies instead of datacenter IPs. Brave's anti-bot system flags datacenter ranges aggressively.
Method 5: Alternative Data Sources (The Smart Way)
Sometimes the best bypass is avoiding the problem entirely. Consider these alternatives:
Option A: Use Brave's Search API (When Available)
# Check if Brave offers API access for your use case
# This avoids captchas entirely
Option B: Scrape Alternative Search Engines
def get_search_data(query):
"""Fallback to other privacy-focused search engines"""
alternatives = {
'searx': f'https://searx.instance.com/search?q={query}',
'qwant': f'https://api.qwant.com/v3/search/web?q={query}',
'startpage': f'https://www.startpage.com/do/search?q={query}'
}
# Implement scraping logic for alternatives
return scrape_alternative(alternatives['searx'])
Option C: Cache and Rate Limit
import redis
from datetime import datetime, timedelta
class CachedSearcher:
def __init__(self):
self.cache = redis.Redis()
self.rate_limit = 10 # searches per hour
def search(self, query):
# Check cache first
cached = self.cache.get(f"search:{query}")
if cached:
return json.loads(cached)
# Check rate limit
if self.is_rate_limited():
return {"error": "Rate limit exceeded"}
# Perform actual search
results = self.perform_search(query)
# Cache for 24 hours
self.cache.setex(
f"search:{query}",
timedelta(hours=24),
json.dumps(results)
)
return results
Common Mistakes to Avoid
Mistake 1: Using Selenium with Default Settings
Brave detects vanilla Selenium immediately. Always use undetected-chromedriver or similar stealth libraries.
Mistake 2: Ignoring Rate Limits
Solving more than a couple of captcha challenges per day may lead to temporary blocks. Space out your requests.
Mistake 3: Static Headers
Rotating only User-Agent isn't enough. Vary all headers including Accept-Language, Accept-Encoding, and browser-specific headers.
Mistake 4: Sequential Patterns
Don't scrape pages 1, 2, 3... in order. Randomize your access patterns to appear more human.
Mistake 5: Ignoring JavaScript Execution
Brave loads content dynamically. Pure HTTP requests might miss important data that loads via JavaScript.
Final Thoughts
Bypassing Brave's captcha requires a multi-layered approach. Start with request-based methods, escalate to browser automation when needed, and always have fallback options ready.
Remember: The most reliable "bypass" is often working within the system's limits. If you're building a legitimate tool, consider:
- Implementing proper rate limiting
- Caching results to minimize requests
- Reaching out to Brave about API access
- Using alternative data sources when possible
The techniques in this guide work as of January 2025, but anti-bot measures evolve constantly. Stay updated by monitoring the developer community and testing your implementations regularly.